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Abstract— This paper argues for the introduction of a main-
line rail-oriented performance metric for driver-replacing on-
board perception systems. Perception at the head of a train
is divided into several subfunctions. This article presents a
preliminary submetric for the obstacle detection subfunction.
To the best of the author’s knowledge, no other such proposal
for obstacle detection exists. A set of submetrics for the
subfunctions should facilitate the comparison of perception
systems among each other and guide the measurement of
human driver performance. It should also be useful for a
standardized prediction of the number of accidents for a given
perception system in a given operational design domain. In
particular, for the proposal of the obstacle detection submetric,
the professional readership is invited to provide their feedback
and quantitative information to the author. The analysis results
of the feedback will be published separately later.

I. INTRODUCTION

Driverless and unattended train operations show multiple
advantages [22]. These advantages are increases in capacity,
reliability, service flexibility and energy efficiency as well
as alleviating the shortage of train drivers. So far, these ad-
vantages can only be enjoyed in the case of fully automated
metros in regular operation. Driverless train operation for
mainline trains is still an unsolved challenge. The crucial
difference is that in mainline railways, the tracks are open
to disruptive exogenous influences, and the use of track-
side measures such as fencing and cab signaling is not
economically justifiable.

The challenge to be solved for mainline railway autom-
atization is related to the fully automated road traffic and
can benefit from technology transfer. It requires a devel-
opment of a vehicle-side AI system performing a multi-
sensory perception. However, a literature review has shown
an order of magnitude lower research activity for rail traffic
in comparison to road traffic [25]. It also showed insufficient
progress – the current Technology Readiness Level (TRL)
for rail traffic is 5 and remains unsurpassed for the last two
decades. A key finding was the absence of a widely accepted
performance metric that could link rail safety requirements
with AI developers’ community.

This article attempts to solve the issue with the absent
performance metric. Such a performance metric would, on
the one hand, provide developers with clear application-
oriented goals, make their results comparable and, on the
other hand, make progress measurable for outsiders. The
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Fig. 1. Rough categorization of system’s functions for driverless mainline
rail traffic, which in comparison to driverless metros, require additional
technological effort [25].

article proposes a preliminary performance submetric for
the major subfunction of obstacle detection. Based on this
proposal, a discussion can be initiated and first perception
system performance results can be compared. The readers of
this paper are urged to actively submit either the performance
data of their systems or their suggestions for improvement to
the author. Further, this paper also aims to bring the domain
inexperienced developers closer to the condition of railway
to increase the research facilitating effect.

II. DIVISION INTO SUBFUNCTIONS

AI systems replacing human staff on trains have to perform
multiple functions. Considering current state-of-art, these
functions will not represent one-to-one the full range of
human abilities, they only cover the most relevant tasks on
at least same performance level. In comparison to state-of-
art driverless metros, the system replacing the train driver on
mainline railways requires extra development. The functions
can be divided into mainly two subfunctions, the perception
of objects with and without physical contact (fig.1). Fig.1
does not include many subfunctions like e.g. surveillance of
door operation, emergency detection, crime detection and so
on.

Perception by contact with objects is referred to here as
collision detection and replaces the train driver’s acoustic
and haptic sensation. Already in EN 62267, a standard for
driverless metros, it is mentioned that a collision has to be
detected at the latest at the contact with an obstacle. In the
special case of shunting, controlled collisions such as running
into a drag shoe or coupling of cars are part of normal
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operation. In all other cases, collisions with objects are
unwanted, dangerous accidents that cannot always be avoided
and must always be detected. Two types of collisions can be
identified so far, impact and overrun events. The detection
of impact events is referred to here as impact detection. For
mainline railways, little research on impact detection and
only one seminal research on overrun event detection systems
[11] are known. Collision detection is therefore at a very
early stage of development.

Detection of obstacles without physical contact replaces
the human sight from the cab. It includes multiple tasks
having driveway surveillance for collision prediction as the
most challenging of them [14]. It is assumed that collision
prediction is always prone to errors, false negatives and
false positives, and therefore cannot make collision detection
obsolete.

Visual inspection of infrastructure and rolling stock is
more important for mainline railways than for metros due to
greater exogenous influences and bigger operational areas,
and is not only important for predictive maintenance. There
are also cases such as sun kinks, catenary damage, broken
signals, malfunctioning railroad crossing gates and slipping
loads during train meets that require emergency braking and
are therefore part of the driving function. Visual odometry
complements rotary encoders, Inertial Measurement Units
(IMU) and sensors for Global Navigation Satellite System
(GNSS).

The railway signals have to be recognized from the
vehicle. There are multiple groups of signals, which can
be visual or acoustic. In case of shunting for the lowest
Grade of Automation (GoA) 0, signals are e.g. fouling point
indicators at the railway switches. Although the detection
of signals is ensured by automatic train stop in case of
GoA1, they still have to be recognized from the vehicle. The
challenge of signal detection also includes detection of tracks
and their assignment to the signals [18], [23]. From GoA2
on, signals do not need to be detected and are transmitted by
cab signalling when used with ETCS. The GoA2 can also
be conceptually achieved if an automatic visual detection of
signals assists the driver [12].

Prediction of collision with obstacles requires algorithms
for obstacle detection, distance estimation, Region of Interest
(RoI) determination, obstacle trajectory prediction, human
intention recognition and other predictive functions. Depend-
ing on the choice of operational design domain (ODD), some
of the functions, such as human intention recognition, may
be unnecessary. Obstacle detection can be further subdivided
into object detection, obstacle classification and spatial angle
determination. There are internal obstacles such as railway
vehicles and buffer stops. The external obstacles can be
pedestrians, road cars, big animals, trees, rocks, wrongly
placed drag shoes, floods, fires and similar. Obstacles do
not only appear on the ground, they might also hang on the
catenary [1], [2], [3], [4], [5] or levitate in the air.

Distance estimation is important for shunting and also for
detecting obstacles from long distances in curves, where a
relatively small distance error determines whether or not an
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Fig. 2. Data required for two currently available approaches of safety
argumentation for European mainline railway systems [26]. The grey frame
denotes the explicit risk assessment with resulting hourly fatality rates and
the maximal values of harmonized design goals. The orange frame denotes
the comparison with the a human train driver as reference system.

object intersects with the structure gauge [9]. Spatial angle
determination together with distance estimation is referred
to as obstacle localization. For the RoI determination, a 3D
tubular space formed by the predicted train’s driveway and
the structure gauge should be determined in the scene. Train’s
driveway is also known as train’s path [20]. The structure
gauge is supplemented with a speed-dependent hazard area
for pedestrians, which arises due to aerodynamics around
a moving train [10]. In the rare case that the states of the
switches are not otherwise available to the perception system,
they must be extracted from the visual input for the train’s
path prediction.

III. SAFETY ARGUMENTATION
All subfunctions, described in Sec.II, require performance

indicating submetrics for all relevant stakeholders, especially
the developers and the regulators. Safety relevant functions
for European mainline railways are approved according to the
Common Safety Method for Risk evaluation and Assessment
(CSM-RA). Hereby, performance metrics are needed, which
allow prove of compliance with standards, comparison with
human performance or calculation of resulting hourly fatality
rates. Since there are still no standards for this, only two
remaining approaches of safety argumentation are available
(fig.2). These are the reference system comparison and ex-
plicit risk assessment according to harmonised design goals.

As depicted in fig.2 for collision risks, both approaches
need performance data of system’s collision prediction and
collision detection for all relevant conditions. Explicit risk
assessment requires additional data to calculate, whether
the probability for an accident with a single fatality is
lower than 10−7 and for an accident with more than one
fatality is lower than 10−9. This additional data includes
schedule, braking properties, route geometry, probabilities
for obstacles, collision consequences, acoustic properties for
warning horn, transported load and passengers. This data
describes the ODD of a train and is called here ”ODD-Data”.
Instead of ODD-Data, the reference system comparison



needs performance data of human collision prediction and
collision detection for all relevant conditions.

IV. REQUIREMENTS FOR OBSTACLE DETECTION

To justify performance metrics, a detailed description of
obstacle detection in the railway domain is given with a
focus on safety. Commonly used performance metrics do not
correlate well with the safety argumentation. In particular, the
performance metric Intersection over Union (IoU), which is
oriented to the 2D space of camera images, could mislead
the development of a perception system. Even in 3D space,
IoU still requires a safety-oriented weighting of the spatial
direction of the mismatch between prediction and ground
truth. Mean Average Precision (mAP) based on IoU provides
a value only for single shot prediction, not for a sequence of
images of a train approaching an obstacle.

As according to the statistics of Eurostat for 2021 in EU
[8], 64.5% of fatalities result from accidents to persons by
rolling stock in motion, 34.3% from level crossing accidents
including pedestrians and only 1.2% from railway vehicle
collisions and other accidents. The portion of pedestrians
in level crossing accidents can be assumed to be 14.6%
based on German statistics by Deutsche Bahn [6] for 2018.
Therefore, the most probable fatal accident scenario is col-
lision with a person at roughly 70%. Second most probable
scenario is collision with a passenger car at roughly 24%.

Both most common scenarios on railways, pedestrian- and
car-collisions, are also most common on roads [7]. In contrast
to commonly known road vehicles, emergency braking and
warning horn are the only available reactions on railway.
The braking distance for railway vehicles is approximately 5
times longer than for road vehicles. The ca. 15 dB(A) louder
warning horn can and should be heard from larger distances
[24], [21]. Both has consequences on the minimal acceptable
performance of vision-based collision prediction and makes
Long-Range Object Detection (LROD) necessary. Due to
curvatures, weather and light conditions, LROD is not always
possible. While for road vehicles, collision prediction enables
its prevention, it is rather a matter of damage limitation and
reverence in the domain of railway vehicles.

Collision with a person causes a fatality for all ego vehicle
speeds in case of railways as according to DIN VDE V
0831-103. However, out of a total of 695 accidental fatalities
and serious injuries in 2021 in EU caused by rolling stock
in motion, 36.5% were seriously injured, i.e. survived [8].
When a deadly collision with a person cannot be prevented,
the braking must be applied to preserve the dignity of the
dead, to facilitate investigation by authorities and prevent
exposure to casual bystanders. This is also important for the
more than 2 000 rail suicides in EU each year, which are not
counted as accidents. Warn horn and braking is never too
late and has to be done as soon as possible in this scenario.

Collision with a passenger car is more intricate scenario
than with a person regarding the consequences of different
ego vehicle speeds. Fig.3 shows the roughly estimated con-
sequences for the collision of a train travelling at 130 km/h
with a stranded passenger car. For simplicity, a uniform

TABLE I
HUMAN DETECTION OF OBJECTS ON RAILWAYS IN M.

Object Median distance
of detection

0.4m2 and 2m2, 30% contrast > 750
2m2, 8% contrast 500
0.4m2, 8% contrast 240
2m2, 30% contrast, at night 180
0.4m2, 30% contrast, at night 60
0.4m2 and 2m2, 8% contrast, at night < 60
[19]
40× 40× 40 cm 250
20× 20× 20 cm 175
10× 10× 10 cm 50
5× 5× 5 cm < 25
fluorescent objects at night, 60 km/h [13]
person in safety jacket 400
passenger car 300
person 240
passenger car at night < 60
person in safety jacket at night < 60
person at night < 60
[15]
trees, 50-70 km/h 60
fallen rocks, 20-120 km/h 30
accident statistics [17]

emergency braking deceleration of 1m/s2 without delay is as-
sumed. More realistic modeling would require consideration
of additional modifiers such as co-functioning of different
types of brakes, sanding to improve adhesion, and surge
behavior of the liquid load. In the best case, if the car is
recognised at more than 652m, the emergency braking can
prevent the collision. In the worst case, if the car is not
recognised before the collision, the impact detection system
should recognise the crash and break to reduce the risk of a
potential derailment of the train. The LROD can not always
achieve the best case due to obstruction of view in curves,
through hilltop, weather conditions, insufficient illumination,
as well as due to sudden intrusion of a moving obstacle.

However, earlier braking between the best and worst case
reduces harm, which can be shown in our example in fig.3.
According to the risk model by ENOTRAC [16], the damage
of obstacles to a train grows with their mass and the speed
of the train. According to DIN VDE V 0831-103, a crashing
train with a speed higher than 40 km/h will cause fatality
of the car driver. If the car driver can escape the car after
hearing the warning horn, early braking gives more time for
the resort depicted as solid curve. The assumption for the
maximal distance of 350m at which the warning horn can be
heard by the car driver is derived from the German regulation
for the maximal distance between a railroad crossing and
a whistle board [28]. A lower speed at the obstacle as a
consequence of early braking reduces the risk area created
by air stream around the vehicle depicted as dashed zigzag
line as according to the speed thresholds in the regulation of
German Statutory Accident Insurance [10].

The distribution of distances, at which human drivers de-
tect objects on railway, has an irregular bell shape [26]. Tab.I
shows median distances for human performance at detecting
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Fig. 3. Estimated consequences for a frontal collision of a train going at 130 km/h with a stationary passenger car depending on braking distance. The
braking deceleration is set to be 1m/s2. The driver can hear the warning horn at a distance of 350m or less and may be able to escape. Negative distances
mean the onward movement of an unbraked collided train. Warning horn and emergency braking start simultaneously. The solid kinked curve shows the
number of seconds between hearing the warning horn by the car driver and the collision. The formula for this curve is added below the graph and provides
an explanation for the kink. The dashed zigzag line depicts the size of the risk area at the collision site. For the sake of simplicity, it is assumed in this
that the derailment risk in this example is only present in collisions at speeds of 130 km/h and above.

objects on the tracks from all known sources. According to
these measurements, a human driver can prevent collision
with the car only if the car is of contrasting paint and is
presented at daylight. At night without illumination, rainy
weather and a decent car paint, the consequences will be
much more severe. The shapes of the obstacle detection
distances distribution are much steeper for computer vision
systems than for humans [15], [17]. One source reports
distances [29], at which first more or less erroneously placed
boxes appear for target objects.

False-negative and false-positive obstacle detection might
occur due to reproducible or irreproducible failures in sensors
and algorithms. The failures can be assigned to certain
functions in certain cases. For instance, objects like stones
and trees from the perceived space outside of RoI can be
detected as obstacles due to wrong localization of them or to

wrong localization of RoI. The space perceived by sensors
is often larger than the 3D RoI, even in the presence of
view obstructions. Another example is small animals that
are recognized as obstacles because they are misclassified as
humans or vice versa.

Computationally, moreover, false-positive visual detection,
i.e., false alarms, must occur much less frequently than false-
negatives, since the case of absent obstacle is overwhelm-
ingly predominant and obstacles are extremely rare. Addi-
tionally, mainline railway vehicles’ emergency breaks can
not be interrupted until full stop in many cases, create jams,
damage to the vehicles and constitute therefore a significant
cost factor, which has to be considered in the performance
metrics. Since false-positive detection can not be outruled,
collision prediction will be most probably complemented by
impact detection to refute false visual detection [26].
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V. PROPOSED PERFORMANCE SUBMETRIC

Fig.4 shows the proposed obstacle detection metric. This
metric is designed for moving train. The abscissa shows the
distances, at which X% of appearing obstacles are detected
while approaching them. (100−X)% are detected at closer
distances. X = 50 denotes a median distance for obstacle
detection. The ordinate shows hourly rates of false-positive
detections, which will cause unneeded warning horn and
jam-creating emergency braking. The values on the ordinate
are negative logarithms of the hourly rate, the lower the
better. The performance values of a system on these two axes
are interlinked and can be adjusted by changing detection
thresholds and tweaking internal parameters of a system.
Like with Precision-Recall (PR) and Receiver Operating
Characteristic (ROC) curves, increasing performance on the
one axis will most probably reduce performance on the other
axis.

The results according to this metric depend on the number
and type of obstacles, the speed of the ego vehicle, the frame
rate of the sensors, the track geometry, the time of day, the
weather conditions, and other properties of a data set used to
validate a system. The characteristics of the validation dataset
will most likely depend on a chosen ODD. The shape of such
performance curves is speculative and is shown in Fig.4 for
hypothetical systems A and B.

Both systems A and B have maximum ranges due to

their sensor resolutions. Setting the internal thresholds of
one system to the extreme of permanent positive detection
will give the maximum range on the abscissa and 100 on
the ordinate. The opposite extreme, where the system is in
permanent negative detection, will result in 0 on the abscissa
and 10−∞ on the ordinate. The shapes of the curves in
between for the hypothetical systems are drawn based on
intuition. From the shape of the curve for the system A, it
can be inferred that (100 − X)% of car-collision scenarios
will result in one or more fatalities with this system adjusted
to < 10−4 false-positives (fig.3). The system B has to be
adjusted to < 10−3 false-positives, 10x more inappropriate
stops, to achieve the same level of safety.

Based on a certain ODD, there will be certain performance
minima for each of the axis. If the functions of emergency
braking and warning horn are separated, the performance
minima for both functions can be different. In project KOM-
PAS, 10−4 or less false-positive emergency braking per hour
is suggested as the minimal acceptable performance [19].
Since false-positive warning horn does not create jams on
the railways, the minimal requirements can be much less
rigorous. However, extensive false-positive warning horn will
probably not be welcomed by residents living close to the
railway. For orientation, this paper proposes a rate of 10−2

cases per hour as depicted in fig.4.
The issue with the minima for distances depends stronger



on ODD. Certain ego vehicle speeds, driveway geometries,
weather and illumination conditions either prohibit or do
not demand LROD for safety argumentation. For instance
in case of car-collision scenario, warning horn is assumed
to be effective a most 350m only. Low ego vehicle speeds
or better brakes result in lower distance requirements for
obstacle detection. If a typical curved route does not allow
sensors to penetrate further forward than 600m, a system
will not be required to have a higher range. Both minima
are depicted in fig.4.

In the pedestrian-collision scenario, the emergency braking
function demands a system to overcome simultaneously
higher minima on both axes than the warning horn function.
In such case, system A is better than system B for both
functions. For the pedestrian-collision scenario, effective
distance for warning horn can be significantly longer than
braking way [21], [27] and that can make system B more
appropriate for warning horn subfunction, while system A is
more appropriate for emergency braking subfunction.

Once the performance minima are met, the order of
preference for both performance values becomes important
in the choice of system and system parameter configuration.
This could lead to answers to questions such as how much
resident annoying extra warning horn is justified to save the
life of one unlawful trespasser or one wild animal.

VI. CONCLUSION AND CALL FOR DATA

A very important idea of this work is the inaptitude of the
concept of a binary false negative rate for obstacle detection
for mainline railways. The non-detection of obstacles is
gradual and not binary. The question is not “What percentage
of the obstacle is detected?”. The question is “At what
distance will X% of the obstacles be detected at the latest?”.
The other important idea is that driving or minimizing the
amount of false-positive stops is the primary goal and com-
putationally more challenging, while safety or maximizing
the timeliness of obstacle detection is the secondary goal.

This paper is intended to elicit feedback from the research
community. It contains a proposal for a submetric for an
autonomous train perception system and a rationale for its
design. The amount of feedback will be maximized by
wide dissemination. The data expected here are lists of
measurements that fit within the proposed submetric in fig.4
and 4-tuples of the performance minima for braking and
warning. An element in the list of measurement contains
the name of the system, the X , rate of false-positives per
hour and the minimal distance for X% detections. Textual
feedback is also welcome, especially as reasoning for the
suggested performance minima. Also, human performance
measurements as benchmark are welcome. The anonymized
data from the feedback will be analyzed and published in a
separate paper, for which this paper serves as a draft.
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