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Abstract— For driverless train operation on mainline rail-
ways, several tasks need to be implemented by technical
systems. One of the most challenging tasks is to monitor the
train’s driveway and its surroundings for potential obstacles
due to long braking distances. Machine learning algorithms
can be used to analyze data from vision sensors such as
infrared (IR) and visual (RGB) cameras, lidars, and radars
to detect objects. Such algorithms require large amounts of
annotated data from objects in the rail environment that may
pose potential obstacles, as well as rail-specific objects such
as tracks or catenary poles, as training data. However, only
very few datasets are publicly available and these available
datasets typically involve only a limited number of sensors.
Datasets and trained models from other domains, such as
automotive, are useful but insufficient for object detection in the
railway context. Therefore, this publication presents OSDaR23,
a multi-sensor dataset of 21 sequences captured in Hamburg,
Germany, in September 2021. The sensor setup consisted of
multiple calibrated and synchronized IR/RGB cameras, lidars,
a radar, and position and acceleration sensors front-mounted on
a railway vehicle. In addition to raw data, the dataset contains
204 091 polyline, polygonal, rectangle and cuboid annotations
for 20 different object classes. This dataset can also be used
for tasks going beyond collision prediction, which are listed in
this paper.

I. INTRODUCTION

In automatic train operation (ATO), technical systems
take over tasks that had previously been performed by the
operating staff. ATO includes different grades of automation
(GoA), up to GoA4 in which the train is fully automated
with no staff on board.

In nowadays operation, one of the main tasks of the train
driver is to monitor the train’s driveway to predict collisions
and act accordingly. The train’s driveway is also known as
the train’s path [1]. This task is rated the most challenging
according to a lately conducted rail industry survey [2] and
impedes an automation upgrade to GoA3 and GoA4, where
no train driver is needed. In this regard, ATO of mainline
trains differs from metros. Fully automated metros, such as
the Nuremberg U-Bahn, are closed systems meaning that
traffic runs in isolated and mostly enclosed environments
such as tunnels, and therefore on-board computer vision
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Fig. 1. Captured data in a railway environment.

(CV) systems are not required to replace human vision for
driveway monitoring [3]. In contrast, open rail systems are
subject to environmental interferences, e.g. at level-crossings
or on unfenced tracks. Therefore, various classes of objects
may protude in the train’s driveway and need to be detected.
Hence, replacing human vision with CV systems is a growing
area of research for mainline railway.

Developing advanced CV systems for mainline railways
requires machine learning [4], and therefore large amounts
of sensor data. Currently, only a few datasets with objects
from the railway environment are available and these datasets
are often limited. In order to narrow this gap, this publication
presents the “Open Sensor Data for Rail 2023” (OSDaR23)
[5], [6], a freely accessible annotated multi-sensor dataset
containing objects that are relevant to CV systems in the
context of mainline railway and beyond.

While the development of CV-based collision prediction
for ATO is the main purpose of OSDaR23, the dataset may
also be used for related tasks and can also serve as a basis for
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extending open datasets created by others. This dataset can
enable developers of CV systems to transfer their algorithms
to the railway domain, thus fostering research in this area.

OSDaR23 was created in the project “Aufbereitung von
Datensätzen für Anwendungen des automatisierten Fahrens
im Eisenbahnbetrieb” (English: “Development of Datasets
for Applications of Automated Driving in Railway Oper-
ations”) conducted by the German Centre for Rail Traffic
Research at the Federal Railway Authority (DZSF) using
sensor data (cf. Fig. 1) provided by DB Netz AG within the
sector initiative of Digitale Schiene Deutschland (DSD). The
annotations of this dataset were created by FusionSystems
GmbH. The dataset is published together with a research
report as well as a labeling guide that specifies how the
annotations were created and how future datasets can be
annotated similarly. These documents can be obtained from
dzsf.bund.de.

II. DATASET REQUIREMENTS FOR OSDAR23

Fully functional CV systems for collision prediction need
to include algorithms for the following three sub tasks:
obstacle detection, distance estimation, and track detection
[1]. Given these groups, several requirements for datasets
for the development of CV systems can be derived.

First, datasets must contain potential obstacles endogenous
to the railway system, such as rail cars and buffer stops, as
well as exogenous obstacles, such as pedestrians, road cars,
animals, trees, rocks, misplaced drag shoes, fires and many
others.

Second, objects are only considered to be obstacles when
they are in the train’s driveway. While object detection in
the railway context usually refers to objects placed on the
tracks, obstacles can also belong to rather unusual object
types or occur in unusual places as reported cases of bicycles
hanging from the catenary illustrate. Therefore, in addition
to the existance of objects, their position relative to the drive
way needs to be determined. The region of interest (ROI) for
object detection includes the tracks as well as the 3D tubular
space formed by the predicted train’s driveway and minimum
clearance profile. To determine the ROI, the datasets must
include tracks and other rail infrastructure objects such as
switches and transitions, which allow the prediction of the
train’s driveway.

Third, compared to road vehicles, braking distances of rail
vehicles are about five times larger, and whistling and emer-
gency braking are the only available reactions to obstacles,
since evasion is obviously not an option. Therefore, datasets
should include data from sensors that include objects at larger
distances over several hundred meters.

Fourth, object detection performance doesn’t only depend
on the distance of an object, but also on several other factors,
such as the size of the object, the visual contrast of the object
compared to the background, the speed of the ego-vehicle,
the weather and time of the day, the occlusion of the object
by other objects and other visual conditions. As a reference,
Tab. I presents median distances for human train driver’s
performance in detecting objects, which might serve as a

TABLE I
HUMAN DETECTION OF OBJECTS ON RAILWAY.

Object Median distance
(area or size) of detection in m
≥ 0.4m2, 30% (visual) contrast > 750
2m2, 8% contrast 500
0.4m2, 8% contrast 240
2m2, 30% contrast, at night 180
0.4m2, 30% contrast, at night 60
≤ 2m2, 8% contrast, at night < 60
[8]
40× 40× 40 cm 250
20× 20× 20 cm 175
10× 10× 10 cm 50
5× 5× 5 cm < 25
fluorescent objects at night, 60 km/h [9]
person in safety jacket 400
passenger car 300
person 240
passenger car at night, person with < 60
and without safety jacket at night
[10]
tree, 50-70 km/h 60
fallen rock, 20-120 km/h 30
Japanese accident statistics [11]

benchmark in safety argumentation [7]. Therefore, another
requirement is that datasets need to contain data collected
under these different circumstances.

Fifth, depending on GoA and the technical implementa-
tion, the task of detecting train signals and their meaning
is either conducted by a human, a CV system, or by cab
signaling (GoA2). In case of CV systems, the datasets
must contain annotated signals. It should also be taken into
account that railway signals significantly differ from street
signs in shape, colour and placement as well as among
railway systems of different countries.

Lastly, it is necessary to predict the future trajectory of
objects in order to determine whether a collision is likely
to happen or not. This requires tracking objects over time.
Therefore, the datasets need to contain tracking identifiers
that allow mapping different annotations to the same physical
object. Therefore, datasets must contain tracking IDs that
allow mapping of different annotations to the same physical
object.

III. EXISTING DATASETS FOR CV IN RAILWAY

To the best of the authors’ knowledge, RailSem19 [12],
FRSign [13], RAWPED [14] and GERALD [15] are the
only CV datasets recorded by frontal on-board sensors of a
railway train including object annotations that have explicitly
been published for free use by the research community. They
contain annotated single RGB-camera frames from video
sequences. RailSem19 contains 8 500 frames of railway and
tram scenes from 38 countries. It contains annotations in
form of geometric shapes and dense pixel-wise semantic
segmentation for trains, switches, switch states, platforms,
buffer stops, rail traffic signs and railway signals. FRSign is
a dataset of 105 352 frames annotated with boxes of French
railway signals in different signal states and GERALD a
dataset of 5 000 frames containing German signals. RAW-
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Fig. 2. The utilized vehicle, with the mounted sensor setup [6].

PED contains 26 000 frames with box annotations for pedes-
trians. In addition to open datasets, there are also datasets that
have been used in research but have not (yet) been published,
such as, the RAILOD dataset of 4 651 manually annotated
single RGB-camera frames from 6 scenes [16].

IV. MOTIVATION FOR OSDAR23

OSDaR23 [5] is a manually annotated open dataset with
a multi-sensor setup for the railway environment. The multi-
sensor setup includes cameras, lidars, a radar as well as
position and acceleration sensors. In contrast, available open
datasets for railway focus mainly on camera images. The goal
of creating OSDaR23 was to advance the development of AI
algorithms for the next GoA of mainline railways, in terms of
object detection. Another related goal is making developers
of AI systems more familiar with the railway context and
to support standardization activities for the safety approval
process [17].

V. MULTI-SENSOR SYSTEM

OSDaR23 was recorded on several data collection runs in
September 2021 in Hamburg, Germany, by DB Netz AG. The
dataset contains sensor data collected under regular operat-
ing environments and situations. Additionally, some special
situations and objects, e.g. flames and smoke, were staged.
The vehicle utilized for data collection was a track working
vehicle with attached profiles. Fig. 2 shows the sensors at
the front of the vehicle mounted on the profiles. The sensor
configuration included a total of six RGB cameras, three
IR cameras, six lidar sensors with different ranges and field
of view (FoV) coverage, a 2D radar sensor, and position
and acceleration sensors (GNSS+IMU). The camera, lidar,
and radar data are shown in Fig. 1. The main technical
specifications of the sensors are listed in Tab. II. The sensors
were calibrated according to the reference coordinate system
shown in Fig. 3. The FoV areas of the sensors covered the
area in front and partially to the side of the vehicle and
overlap each other.

The sensors were synchronized at a frame rate of 10Hz
based on the acquisition time of each sensor. The sensors

Fig. 3. The utilized reference coordinate system.

used the Precision Time Protocol (PTP) in order to synchro-
nize their clocks. As the radar has a capturing rate of 4Hz
only, some radar images are duplicated. The union of frames
from all sensors at a given point in time forms a multi-sensor
frame (m-frame). For the dataset, the point clouds of the
six lidars were ego-motion compensated and merged into a
single point cloud per m-frame.

VI. ANNOTATION SPECIFICATION

In addition to the raw sensor data, the annotations are the
core part of OSDaR23. A labeling guide forms the basis
for the manual creation of annotations by the annotators.
The annotation guide in this project refers to the described
sensor data from IR/RGB cameras, the radar and point cloud
data from the lidars. In the camera and radar frames, axis-
parallel and rotated rectangles, polylines and polygons are
used as two-dimensional (2D) annotation geometries. The
rectangles and polygons enclose the annotated objects in the
sensor images as accurately as possible. The polylines are
used to annotate tracks and transitions – they follow the outer
rail edges. In the lidar point clouds, three-dimensional (3D)
cuboids and polylines are used, as well as semantic segmen-
tations. Cuboids enclose objects and polylines mark contours
analogous to the 2D annotations. In semantic segmentations,
individual lidar points are assigned to an object.

Using these geometries, objects of 22 different classes
from four different categories were annotated. The classes for
dynamic objects are person, crowd, train, wagons, bicycle,
group of bicycles, motorcycle, road vehicle, animal, group
of animals, wheelchair, and drag shoe. The railway related
objects are track, switch, and transition. Static objects are
catenary pole, signal pole, signal, signal bridge, and buffer
stop. Special classes are flame and smoke. As the sensor data
were recorded in Germany, only German railway signals are
part of the data set. All object annotations have tracking IDs
by which they can be assigned to the same physical object
in the real world in all m-frames of a sequence.



TABLE II
MULTI-SENSOR SYSTEM

Three 12MP RGB cameras
Type Teledyne GenieNano 5GigE C4040
Sensor data RGB images (8 Bit, PNG)
Resolution 4 112× 2 504 px
Sampling frequency 10Hz (synchronized)
Alignment trident (in driving direction

diagonal left, central and diagonal right)
Three 5MP RGB cameras
Type Teledyne GenieNano C2420
Sensor data RGB images (8 Bit, PNG)
Resolution 2 464× 1 600 px
Sampling frequency 10Hz (synchronized)
Alignment trident
Three IR cameras
Type Teledyne Calibir DXM640
Sensor data grayscale images (8 Bit, PNG)
Resolution 640× 480 px
Sampling frequency 10Hz (synchronized)
Alignment trident
Three long-range lidars
Type Livox Tele-15
Sensor data 3D point cloud (PCD)
Total sampling points 50 000 - 84 000 points per frame
Sampling frequency 10Hz (synchronized)
One medium-range lidar
Type HesaiTech Pandar64
Sensor data 3D point cloud (PCD)
Total sampling points 60 000 - 115 200 points per frame
Sampling frequency 10Hz (synchronized)
Two short-range lidars
Type Waymo Honeycomb
Sensor data 3D point cloud (PCD)
Total sampling points 20 000 - 40 000 points per frame
Sampling frequency 10Hz (synchronized)
One radar
Type Navtech CIR204/H
Sensor data grayscale images (8 bit, PNG),

cartesian bird’s eye view
Resolution 2 856× 1 428 px
Sampling frequency 4 Hz (synchronized)
Global navigation satellite system (GNSS) sensor with
inertial measurement unit (IMU)
Type NovAtel PwrPAk7D-E1
Sensor data GNSS latitude and longitude in WGS84
Sensor data IMU linear and rotatory acceleration
Sampling frequency 100/10Hz

The annotations are provided in JSON-files that follow
the RailLABEL JSON schema. The RailLABEL schema
is a sub-schema of the ASAM OpenLABEL standard [18]
developed by the Association for Standardization of Au-
tomation and Measuring Systems (ASAM). The development
kit for this dataset is online available on github.com/
DSD-DBS/raillabel.

Details on class attributes, annotation rules and the stor-
age format are presented in the project report and in the
separately published labeling guide [17]. Fig. 4 shows two
examples for the sensor data and its associated annotations.
In the left column a recording of the main station in Hamburg
is presented. In the right column a capture closed to station
Hamburg-Ohlsdorf is shown. The first row shows the images
from the center camera. In the second row the ego-motion
compensated and merged point clouds of the lidars are
shown. The third row presents the data of the central IR

TABLE III
NUMBER OF ANNOTATIONS PER OBJECT CLASS

Object Class Count Object Class Count
person 73 421 bicycle 1 779
signal 32 790 crowd 1 352
catenary pole 27 706 bicycles 644
track 18 543 transition 636
signal pole 14 374 flame 410
road vehicle 12 669 signal bridge 312
train 8 290 smoke 188
buffer stop 4 539 wagons 110
animal 3 288 drag shoe 79
switch 2 947 motorcycle 14

camera. In the last row the outcome of the radar is pictured.
Please note, that the radar images are zoomed in due to the
long viewing range of the radar.

VII. OSDAR23 STATISTICS

The annotated dataset comprises 21 sequences, divided
into 45 subsequences, with a total of 1 534 annotated m-
frames and 204 091 annotation objects. Since an m-frame is
composed of nine camera frames, one radar frame and one
lidar frame, the total number of individual sensor frames
is 1 534 · 11 = 16 874. An annotation object refers to the
annotation of a physical real-world object captured in a
sensor at a point in time. A real-world object is typically
captured by multiple sensors and over multiple points in
time and is therefore represented in multiple annotation
objects. To cover a wide variety of object classes and envi-
ronments while enabling the development of object tracking,
the dataset contains several shorter sequences of different
locations and situations with ten m-frames each as well as
some longer sequences of 40 to 100 m-frames. The most
common annotation objects are persons such as passengers
or staff. These are followed by static objects such as signals,
catenary poles, tracks, signal poles, buffer stops, and dynamic
objects such as road vehicles and trains. Tab. III gives an
overview of the distribution of the annotation objects.

VIII. LIMITATIONS

First, OSDaR23 does not provide an associated digital
map. However, a digital map can be created from the
annotated data using visual odometry or self-localization.

The annotation of signals does not include the association
with the belonging tracks. Since exceptions to the rules for
signal placement exist, these associations can not be easily
derived [19]. Furthermore, OSDaR23 does not provide the
classification of signal states.

Automation of shunting operation in shunting yards with-
out signaling requires recordings and annotations of foul-
ing point indicators at the railway switches, which OS-
DaR23 does not provide.

The visual inspection of the infrastructure and vehicle is an
important task to prevent accidents additionally to predictive
maintenance. Sun kinks, rail breaks, gravel underwashing
floods, catenary damage, broken signals, dysfunctional level-
crossing gates and slipping load of crossing trains must be

github.com/DSD-DBS/raillabel
github.com/DSD-DBS/raillabel


Fig. 4. Examples for annotated sensor data from OSDaR23. Left column: Sequence inside Hamburg Main Station. Right column: Sequence at Station
Ohlsdorf. First Row: RGB center camera. Second Row: Merged Lidar point cloud. Third row: IR center camera. Last Row: Radar (zoomed).



detected to induce emergency braking. However, such cases
are not covered by OSDaR23.

IX. CONCLUSION AND FUTURE WORK

In this article, the multi-sensor dataset OSDaR23 [5]
for the railway environment is presented. The sensor setup
consists of multiple calibrated and synchronized IR/RGB
cameras, lidars, a radar as well as GNSS+IMU sensors.
During data collection, the sensors were mounted on the
front of a track work vehicle. The dataset contains 204 091
annotations for 20 different object classes from total 22
defined in the labeling guide. Therefore, OSDaR23 can
be used for the development of AI models for collision
prediction and object detection required for ATO. The dataset
can be extended with user-specific complementary data like
objects intruding into the railways.

Today, there are more than 200 known methods for
pedestrian motion prediction [20], which can be tested on
OSDaR23. Detecting pedestrians is a very important task as
trespassing railways is a life-threatening criminal offense that
also obstructs train operation.

Further datasets beyond OSDaR23 will be required to
develop CV systems fulfilling high safety requirements of
ATO. They should include different sensor configurations,
a quantitative increase of data, qualitative expansion of the
object classes, their attributes, geometries, environments, and
situations as well as recordings of unusual, (anticipated)
critical and incident events.

OSDaR23 will be integrated in the DSD Data-Factory
[21]. The Data-Factory is a platform for the systematic
provision and processing of sensor data for the development
of AI functions and for the simulation of photorealistic
scenarios including reasonable trajectories of the relevant
objects as well as artificial sensor data.

The DZSF continues the activities in processing and
publishing sensor data with the support of DB Netz AG.

OSDaR23 and its annotation specification can serve as a
reference as well as a basis for extensions, which will fill the
gaps described in Sec. VIII. Developers of CV systems that
work in related fields of research like visual infrastructure
inspection [22], automated security surveillance [23], train
door operation, digital railway mapping etc. performed on-
board and off-board might take advantage of these extensions
and contribute to the development of further datasets. All
stakeholders in the rail sector and beyond are invited to par-
ticipate in this effort and, if possible, publicate new datasets
to achieve a broad research and development community.
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