
ScienceDirect

Available online at www.sciencedirect.com

Transportation Research Procedia 72 (2023) 1918–1925

2352-1465 © 2023 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the Transport Research Arena (TRA) Conference
10.1016/j.trpro.2023.11.671

10.1016/j.trpro.2023.11.671 2352-1465

© 2023 The Authors. Published by ELSEVIER B.V.
This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0)
Peer-review under responsibility of the scientific committee of the Transport Research Arena (TRA) Conference

 

Available online at www.sciencedirect.com 

ScienceDirect 

Transportation Research Procedia 00 (2022) 000–000  
www.elsevier.com/locate/procedia 

 

2352-1465 © 2022 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license 
(https://creativecommons.org/licenses/by-nc-nd/4.0) 
Peer-review under responsibility of the scientific committee of the Transport Research Arena (TRA) Conference  

Transport Research Arena (TRA) Conference 

Estimating railway resilience curves: recovery duration and train 
traffic response to floods and tree fall 

Vigile Marie Fabellaa*, Sonja Szymczaka 

aGerman Centre for Rail Traffic Research at the Federal Railway Authority, August-Bebel-Straße 10, Dresden 01219 Germany 

Abstract 

An important aspect of transport infrastructure resilience is recovery, i.e. the process of returning to original service levels after a 
disruption. In this paper, we estimate recovery trajectories of the German rail network for two specific types of natural hazards: 
floods and tree fall. Extensive traffic data on track segments of the Deutsche Bahn are matched to geospatial information on 
disruptive flood and tree-fall events between 2018-2020. We quantify mean resilience curves for flood and tree-fall events by 
taking average train counts for each day within a (–7, +14)-day window. Results suggest that traffic takes about three days on 
average to return to normal operations after a tree-fall disruption lasting longer than one day, while it takes five days on average to 
recover from a flood. Trajectories vary according to route type and are influenced by seasonal weather conditions.  
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1. Introduction 

It is important to make rail operations more resilient to natural hazards, especially in the context of climate change, 
in order to enable the public and freight transport to function continuously and reliably. The United Nations Office 
for Disaster Risk Reduction (UNDRR) defines resilience as “the ability of a system, community or society exposed 
to hazards to resist, absorb, accommodate and recover from the effects of a hazard in a timely and efficient manner, 
including through the preservation and restoration of its essential basic structures and functions” (UNDRR 2009). In 
terms of the transport sector, CEN (2021) defines resilience as the “ability to continue to provide service if a disruptive 
event occurs”. The resilience of an infrastructure to natural hazards therefore depends on at least two things: the ability 
to soak up the adverse effect of the natural hazard upon impact (absorption) and the process of returning to its original, 
pre-disruption service level (recovery). While absorption encompasses the robustness or vulnerability of the 
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infrastructure, the second aspect, recovery, includes the rapidity and trajectory of the return to regular operations. 
Typically, resilience is measured as the deviation from a standard level of service and is presented in the form of a 
curve. For railway infrastructure, whose absorption capabilities are constrained by limited re-routing possibilities and 
the prevalence of single-line tracks (Mattson and Jenelius 2015), a swift post-hazard recovery is of vital importance. 
However, the quantitative study of railway recovery from natural hazards remains relatively unexplored. Prior studies 
have focused mainly on the absorption aspect, investigating the effect of natural hazards on economic or operational 
damages to the railway system (Chan and Schofer 2016; Kellerman et al. 2016; Xu, et al. 2016; Fabella and Szymczak 
2021). While recent recovery research have proposed deterministic (Janic 2018) or network science-based (Bhatia, et 
al. 2015; Yadav, et al. 2020) quantifications of resilience, the results of these approaches remain limited to the specific 
disaster event which they simulate or analyse. 

In this paper, we estimate average resilience curves and recovery trajectories of the German railway network with 
respect to two types of natural hazards: floods and tree fall. Tree-fall events are the most commonly occurring hazard 
along the German railway network, with more than 3,000 reported line disruptions every year (Fabella & Szymczak 
2021). Meanwhile, compared to other natural hazards such as landslides and slope fires, floods have the largest adverse 
impact on railway operations. Fabella and Szymczak (2021) estimate that a flood disruption could reduce the daily 
train traffic by 19% on average. Indeed, the scope of damages a flood can cause to transportation infrastructure is most 
salient in the recent flooding disaster in Germany and central Europe in summer of 2021 (Fekete and Sandholz 2021; 
Koks et al. 2021; Szymczak et al. submitted).  

To approximate resilience trajectories of tree-fall and flood hazards, we match historical traffic data of the 
Deutsche Bahn AG (henceforth DB) to geospatial information on disruptive flood and tree-fall events between 2018 
and 2020. How these closures correspond to the resulting recovery duration in terms of train traffic restoration are 
examined descriptively by taking average train counts for each day within a (-7, +14)-day window around the 
disruption. This allows for an aggregate approximation of the mean post-disruption recovery duration and recovery 
trajectories for flood and tree-fall events along the railway network. 

2. Data and Methods 

Estimating average resilience curves of a transportation infrastructure network to natural hazards requires two 
types of information: (i) the service level of the infrastructure over time and (ii) the temporal and spatial incidence of 
natural hazard disruptions along the network. For (i) we use daily, track segment-level traffic data, while for (ii) we 
use disruption datasets for flood and tree fall events taken from the accident database of the DB. Both datasets were 
graciously provided by the DB Netz AG, Frankfurt, a fully owned subsidiary of the largest rail-transport operator in 
Germany, the Deutsche Bahn. In the following subsections, we elaborate on the two datasets and the methods used 
for matching and analysis.  

2.1. Train traffic data 

To represent the service level provided by the rail transport network, we use daily traffic data from the DB for the 
time period January 25, 2018 to December 31, 2020. For each segment of the railway network between two operating 
points (henceforth called track segments), the daily number of passing trains in both directions is provided. Train 
counts include freight trains as well as long- and short-distance passenger trains. The specific route number to which 
the track segment belongs is also included, allowing the identification of each track segment by its route number and 
the two operating points at both ends of the segment. The traffic data consists of 10767 track segments, of which 3720 
experienced at least one disruptive flood or tree-fall event over the investigation period.  

The distribution of daily train counts varies considerably across track segments (Figure 1). Close to one fourth of 
all segments have around 25 trains per day, yet some segments have an average daily traffic exceeding 200 trains. To 
make traffic levels comparable across track segments, train counts were standardized using segment-specific means 
and standard deviations. Furthermore, the transformation uses the first two moments of the distribution over a 
restricted sample of days where no natural hazard disruption takes place. This serves to provide an easy benchmark 
for “regular operations”, which is when the value of the standardized variable is equal to zero.  

In order to filter out the variations in traffic caused by weekly or seasonal fluctuations and other confounding 
factors, we conduct an ordinary least squares (OLS) regression of the standardized train counts against dummy 
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infrastructure, the second aspect, recovery, includes the rapidity and trajectory of the return to regular operations. 
Typically, resilience is measured as the deviation from a standard level of service and is presented in the form of a 
curve. For railway infrastructure, whose absorption capabilities are constrained by limited re-routing possibilities and 
the prevalence of single-line tracks (Mattson and Jenelius 2015), a swift post-hazard recovery is of vital importance. 
However, the quantitative study of railway recovery from natural hazards remains relatively unexplored. Prior studies 
have focused mainly on the absorption aspect, investigating the effect of natural hazards on economic or operational 
damages to the railway system (Chan and Schofer 2016; Kellerman et al. 2016; Xu, et al. 2016; Fabella and Szymczak 
2021). While recent recovery research have proposed deterministic (Janic 2018) or network science-based (Bhatia, et 
al. 2015; Yadav, et al. 2020) quantifications of resilience, the results of these approaches remain limited to the specific 
disaster event which they simulate or analyse. 

In this paper, we estimate average resilience curves and recovery trajectories of the German railway network with 
respect to two types of natural hazards: floods and tree fall. Tree-fall events are the most commonly occurring hazard 
along the German railway network, with more than 3,000 reported line disruptions every year (Fabella & Szymczak 
2021). Meanwhile, compared to other natural hazards such as landslides and slope fires, floods have the largest adverse 
impact on railway operations. Fabella and Szymczak (2021) estimate that a flood disruption could reduce the daily 
train traffic by 19% on average. Indeed, the scope of damages a flood can cause to transportation infrastructure is most 
salient in the recent flooding disaster in Germany and central Europe in summer of 2021 (Fekete and Sandholz 2021; 
Koks et al. 2021; Szymczak et al. submitted).  

To approximate resilience trajectories of tree-fall and flood hazards, we match historical traffic data of the 
Deutsche Bahn AG (henceforth DB) to geospatial information on disruptive flood and tree-fall events between 2018 
and 2020. How these closures correspond to the resulting recovery duration in terms of train traffic restoration are 
examined descriptively by taking average train counts for each day within a (-7, +14)-day window around the 
disruption. This allows for an aggregate approximation of the mean post-disruption recovery duration and recovery 
trajectories for flood and tree-fall events along the railway network. 

2. Data and Methods 

Estimating average resilience curves of a transportation infrastructure network to natural hazards requires two 
types of information: (i) the service level of the infrastructure over time and (ii) the temporal and spatial incidence of 
natural hazard disruptions along the network. For (i) we use daily, track segment-level traffic data, while for (ii) we 
use disruption datasets for flood and tree fall events taken from the accident database of the DB. Both datasets were 
graciously provided by the DB Netz AG, Frankfurt, a fully owned subsidiary of the largest rail-transport operator in 
Germany, the Deutsche Bahn. In the following subsections, we elaborate on the two datasets and the methods used 
for matching and analysis.  

2.1. Train traffic data 

To represent the service level provided by the rail transport network, we use daily traffic data from the DB for the 
time period January 25, 2018 to December 31, 2020. For each segment of the railway network between two operating 
points (henceforth called track segments), the daily number of passing trains in both directions is provided. Train 
counts include freight trains as well as long- and short-distance passenger trains. The specific route number to which 
the track segment belongs is also included, allowing the identification of each track segment by its route number and 
the two operating points at both ends of the segment. The traffic data consists of 10767 track segments, of which 3720 
experienced at least one disruptive flood or tree-fall event over the investigation period.  

The distribution of daily train counts varies considerably across track segments (Figure 1). Close to one fourth of 
all segments have around 25 trains per day, yet some segments have an average daily traffic exceeding 200 trains. To 
make traffic levels comparable across track segments, train counts were standardized using segment-specific means 
and standard deviations. Furthermore, the transformation uses the first two moments of the distribution over a 
restricted sample of days where no natural hazard disruption takes place. This serves to provide an easy benchmark 
for “regular operations”, which is when the value of the standardized variable is equal to zero.  

In order to filter out the variations in traffic caused by weekly or seasonal fluctuations and other confounding 
factors, we conduct an ordinary least squares (OLS) regression of the standardized train counts against dummy 
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variables for the day of the week, the month and the year, as well control variables that correlate strongly with traffic, 
such as precipitation. The variables used for the regression and how much they correlate with traffic are discussed in 
detail by Fabella and Szymczak (2021). The R-squared of the regression is 0.21, meaning the seasonal and control 
variables explain only 21% of all the variation in train counts, and 79% of the variation remain in the residuals. The 
residuals from this regression, henceforth called residual traffic, represents the variations in standardized train counts 
caused by factors other than precipitation or week, month or year effects. From this point forward, residual traffic will 
be used as the primary measure of the level of service in the estimation of the resilience curves. 

 

 
Fig. 1. Histogram of average daily train counts across track segments. 

2.2. Disruption data 

The second piece of information critical for resilience curve estimation is the occurrence of natural hazards. 
Reported tree-fall and flood disruptions along the German railway network (also referred to as events) were obtained 
from the accident database of DB Netz AG, which contain records of disruption reports submitted by train operators. 
Both datasets containing flood and tree-fall disruption reports provide information on the geographic location, date, 
time, and duration of every reported disruptive event that occurred along the railway network between 2018 and 2020. 
However, the flood and tree-fall datasets differ in the type of geographic information they provide. The tree-fall dataset 
includes the route number and kilometer location of the disruption, allowing the exact identification of the associated 
track section in the traffic dataset. There is therefore a one-to-one matching between tree-fall events and track 
segments in the traffic dataset. In contrast, the flood dataset only reports the closest operating point to the location of 
the disruption. This means that the exact track segment associated with the disruptive event could not be identified 
with precision. Instead, each flood event was matched to all track segments that have as an endpoint the closest 
operating point to the flood. Since operating points may belong to intersecting routes on the network, this strategy 
results in a one-to-many matching of flood events to track segments. This less-accurate matching could result in flatter 
resilience curves and wider confidence intervals due to the increased uncertainty in the location of the disruption. 
Nevertheless, estimated resilience curves using this data could still be useful when taken as an upper bound of the true 
recovery trajectory of the resilience curve.  

Disruptions due to tree fall occur frequently along the German railway network, with 9862 reported events between 
2018 and 2020. Of these, 8387 were successfully matched to track segments in the traffic data (90% match rate). In 
contrast, flood events occur much less frequently with only 98 reported disruptions in the same period. All flood 
events were successfully matched to 210 track segments in the traffic data (100% match rate). 

Figure 2 plots the weekly distributions of tree fall and flood events over the investigation period. The 8387 tree fall 
events are distributed over a total of 991 days with a maximum of 363 events in a single day (February 10, 2020, 
storm Sabine). The events are fairly evenly distributed between spring, summer and winter, while a significantly lower 
number of events occurs in autumn. The 210 flood events are distributed over a total of only 47 days with a maximum 
of 29 events on one day (June 1, 2018). More than half of the floods occurred in summer, while floods in autumn and 
winter are rare in the three years included in the study. Tree-fall events tend to cluster around incidences of storms, as 
can be seen by the spikes in disruptions during the storms Bennet, Eberhard and Sabine, which all occurred early in 
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the year. In contrast, the maximum peak of flood events occurred in summer 2018. No storm or hurricane occurred 
during this time, but constant thunderstorms and heavy rains ravaged Germany throughout May and June (DWD 
2018).  

 
Fig. 2. Weekly distribution of tree fall (top) and flood (bottom) events. 

Table 1 presents the summary statistics of disruption duration for tree fall and flood events. On average, tree fall 
disruptions last 4.4 hours, while flood disruptions are considerably longer with 68.8 hours or 2.9 days. For flood 
events, a larger proportion result in interruptions lasting longer than one day (32.9% versus 1.9% for tree fall). The 
average duration of interruptions longer than one day is 196 hours (8 days) for flood events and 119 hours (5 days) 
for tree fall. The number of events with interruptions lasting longer than a week are 18 for flood and 23 for tree-fall 
events, respectively.  

Table 1. Distribution of disruption duration by natural hazard. 

 Tree fall  Flood 
 No. of 

events 
Duration (in hours)  No. of 

events 
Duration (in hours) 

 Mean Median Std. Dev.  Mean Median Std. Dev. 
Shorter than one day 8224 2.1 1.3 2.8  141 6.6 4.1 6.2 
Longer than one day 163 119.7 41.5 260  69 195.9 55.8 310.2 
Total 8387 4.4 1.3 39.7  210 68.8 10.9 198.2 

2.3. Average resilience curves 

To estimate the average trajectories of traffic around the tree-fall and flood events, we take the seven days before 
and 14 days after the start of each reported event and calculate the arithmetic mean of residual traffic for each 
individual day around the disruptive event. Given that tree fall and floods longer than 24 hours last on average five 
and eight days, respectively, a 14-day window after the recorded begin of the disruption was selected to capture the 
full recovery trajectory of the disruptions. Including the week before the event serves to give an impression of the 
prior traffic levels, which may already fall below the average, especially for disruptions that happen during and around 
storms.  

Formally, for each disruption type d ∈ (tree fall, flood) and day t ∈ (–7, +14) we calculate the mean residual traffic, 
MRT, as 

 
(1) 

where RTit is the residual traffic of event i on day t, and Nt
d is the total number of events for disruption type d on day 

t. Since train traffic data is only available in daily resolution, we divided the data set into disruptions with a duration 
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events, a larger proportion result in interruptions lasting longer than one day (32.9% versus 1.9% for tree fall). The 
average duration of interruptions longer than one day is 196 hours (8 days) for flood events and 119 hours (5 days) 
for tree fall. The number of events with interruptions lasting longer than a week are 18 for flood and 23 for tree-fall 
events, respectively.  

Table 1. Distribution of disruption duration by natural hazard. 

 Tree fall  Flood 
 No. of 

events 
Duration (in hours)  No. of 

events 
Duration (in hours) 

 Mean Median Std. Dev.  Mean Median Std. Dev. 
Shorter than one day 8224 2.1 1.3 2.8  141 6.6 4.1 6.2 
Longer than one day 163 119.7 41.5 260  69 195.9 55.8 310.2 
Total 8387 4.4 1.3 39.7  210 68.8 10.9 198.2 

2.3. Average resilience curves 

To estimate the average trajectories of traffic around the tree-fall and flood events, we take the seven days before 
and 14 days after the start of each reported event and calculate the arithmetic mean of residual traffic for each 
individual day around the disruptive event. Given that tree fall and floods longer than 24 hours last on average five 
and eight days, respectively, a 14-day window after the recorded begin of the disruption was selected to capture the 
full recovery trajectory of the disruptions. Including the week before the event serves to give an impression of the 
prior traffic levels, which may already fall below the average, especially for disruptions that happen during and around 
storms.  

Formally, for each disruption type d ∈ (tree fall, flood) and day t ∈ (–7, +14) we calculate the mean residual traffic, 
MRT, as 

 
(1) 

where RTit is the residual traffic of event i on day t, and Nt
d is the total number of events for disruption type d on day 

t. Since train traffic data is only available in daily resolution, we divided the data set into disruptions with a duration 
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shorter and longer than one day and present the resilience curves for each of these subsets separately. We then compare 
the resulting resilience curves across types of railway lines (main line vs. branch line), and explore the influence of 
temporally adjacent disruptions on the same track segment, i.e. disruptions occurring within 14 days of each other.  

3. Results and discussion  

Figure 3 plots the trajectory of the mean residual traffic for tree-fall and flood events, separating the curves 
according to disruption duration. For both tree fall and floods, short disruptions have a relatively flat curve with only 
a small decline on day zero that recovers immediately, as seen from the dashed lines. The brief dip in traffic is small 
but significant: –0.05 standard deviations for tree fall and close to –0.2 standard deviations for floods. In contrast to 
short disruptions, events lasting longer than one day, as depicted by the solid green or blue lines, exhibit a pronounced 
decline in traffic at day zero. Long-lasting tree-fall events reduce traffic by almost 0.75 standard deviations and take 
on average three days to get back to the normal level. Long-lasting floods cause an immediate decline in the number 
of trains by over one standard deviation and remains there for another two days before returning to the normal level 
on day five. That the immediate impact of the disruption is relatively larger on average for floods than for tree fall 
aligns with the findings of Fabella and Szymczak (2021). 
 

 
Fig. 3. Mean resilience curves for tree fall (left) and flood (right) events, separated by duration of the disruption. 

Given that tree fall and floods tend to cluster around specific time periods (Figure 2), we check whether particular 
weather conditions associated with clustered disruptions influence the recovery trajectories. The mean resilience 
curves of tree-fall disruptions that occurred during a period in March 2019 with a series of storm events, most notably 
Bennet and Eberhard (Haeseler et al. 2019) is plotted in Figure 4(a). Since these two storms hit Germany within six 
days of each other, we analyse the resulting disruptions together. The tree fall events brought about by storm Sabine 
in March 2020 (Haeseler et al. 2020) is plotted in Figure 4(b). The solid lines show the mean resilience curves of 
disruptions longer than one day. These curves in (a) and (b) show similar trajectories, dropping by over one standard 
deviation, but recovering fairly quickly. In contrast to Bennet and Eberhard, however, the traffic during Sabine took 
a large hit even from short disruptions, as depicted by the dashed lines. Tree fall events shorter than one day reduced 
the number of trains by 0.5 standard deviations.  

The resilience curve for floods during the heavy summer rains in 2018 (Figure 4(c)) exhibits a gradual decrease 
that begins seven days prior to the disruption, reaches its minimum at day two, and gradually rises all the way back 
up on day 14. The slow reduction and recovery could be traced back to the consistent rains that spanned several weeks, 
which likely caused traffic to go down before and after any one disruption (DWD 2018). Prior reductions in traffic 
could be due to reduced train speeds or pre-emptive cancellation of trips. The slow recovery could also be due to 
clearance and repair capacity limits being reached in the presence of temporally and spatially clustered disruptions. 
The variations in reported starting times of the disruption may also elucidate the differences in the curves. Reports 
submitted by train operators on disruptions due to fallen trees usually peak between 7:00 and 9:00 am. However, since 
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reports are filed upon encountering a disruption, the time at which the tree actually fell may not necessarily be within 
these hours of the day. Given that train operations are minimal at night, trees in the tracks are often not sighted until 
the first run of the day. Therefore, the actual time of the event might be late at night the day before. Furthermore, when 
severe weather warnings are issued, operations are often reduced or even stopped altogether as a precautionary 
measure to avoid trains from getting stuck on an open track. This would prevent the timely discovery and report of a 
tree fall and could explain why train counts in Figure 4(b) begin to decline the day before the event. The situation is 
different for flood events. Here, the onset of the event is most often in the afternoon hours, i.e. one can assume a more 
direct temporal connection between the occurrence of the event and its subsequent report. More than half of the events 
occur during summer months, when local thunderstorms with heavy precipitation are one of the main causes of small-
scale flooding. These thunderstorms often come in the afternoon and early evening, which correspond with the time 
of day in which most reports are filed. In fact, floods may even be reported at the very onset of the event, before it 
reaches its worst phase, potentially explaining the delayed trough in Figure 4(c). 

 

 
Fig. 4. Mean resilience curves for tree fall events during the storms Bennet and Eberhard (left), Sabine (middle), and floods during the heavy 

summer rains in 2018 (right). 

A detailed analysis of the impact of events on spatially adjacent routes is beyond the scope of this study; however, 
it is sensible to expect that the closure of a particular track segment will have an impact on adjacent track segments 
and intersecting routes. The magnitude of this impact depends on several factors, including the type of the route, 
normal daily traffic volumes, and the availability of alternative routes. The triggering factors of natural hazards also 
play an important role. For instance, storm events, the main trigger for tree fall, are often large-scale events that affect 
the entire railway network. Within a short period of time, disruptions occur at many points in the network at the same 
time, making it necessary to prioritize clearance. In addition, personnel or infrastructural bottlenecks or poor 
accessibility of the disruption location can lead to a delay in clearance. This can result in the initial level of train 
numbers only being reached again with a time delay several days after the event, visible in Figure 4(a) and (b). 

To further investigate the effect of temporally adjacent events, Figure 5 illustrates mean resilience curves for tree 
fall events by distance (in days) to adjacent disruptions. This analysis could only been conducted for tree fall as there 
are too few track segments with adjacent flood events in the data. In the majority of tree fall events (85%), no further 
disruptions occur on the same track segment within the (–7, +14)-day window. In 653 cases (7.8%), another event 
occurs after, in 591 (7.1%) cases before the event. If another event occurs 1-2 days later, this is clearly visible in the 
trajectory of the solid, green curve in 5(a). In this case, the recovery trajectory is rather flat and is slow to return to the 
initial level. In contrast, subsequent events that occur between 3-7 days manifest in narrow bursts that quickly returns 
to the initial level, as seen from the dashed, blue curve in Figure 5(a). For subsequent events that occur more than 8 
days after, no significant decline in the curve can be perceived.  

In Figure 5(b), on the other hand, one can observe the solid green curve that traffic already decreases at day –1 
when tree-fall events occur 1-2 days prior. Any event preceding the disruption by more than two days does not have 
any discernable effect on average.  
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Fig. 5. Mean resilience curves for tree fall events, separated by distance (in days) from adjacent disruptions in the same track segment after (left) 
and before (right) the event under consideration. This analysis was conducted only for tree fall as the number of events with adjacent disruptions 

is too small for flood events (18 events only). 

Another factor influencing the shape of the curves is the type of route (main line or branch line), which implies 
the degree of importance of a track segment relative to the rest in the network. Figure 6 plots the resilience curves 
according to the route type. Tree fall disruptions have only a discernable effect on traffic for disruptions lasting longer 
than one day. The stronger impact on main lines can be explained by the different degree of electrification. On the 
main lines, 66% are electrified, 31.8% not electrified and 2.2% partially electrified. By contrast, only 8.1% of the 
branch lines are electrified, while 88.8% are not electrified and 3.1% partially electrified. If a tree fall damages the 
overhead cables of an electrified route, it will take longer to restore the track back to regular operations.  

 

 
Fig. 6. Mean resilience curves for tree fall (left) and flood (right) events, separated by type of route and duration. 

For flood events, both solid blue curves for main and branch lines show a decline on the day of the event, albeit 
only statistically significant for main lines. The recovery trajectory in the main line is flatter and takes longer to 
recover. However, the decline in traffic in the branch lines already begin two days prior to the reported start of the 
flood event. Branch lines can be more susceptible to small-scale flooding because they often follow the topography 
and frequently run along river valleys on the valley floor. This makes them vulnerable even at the onset of river 
flooding and rainwater accumulation. Hence, the early reduction in traffic in branch lines. In contrast, high-speed lines 
usually run straight via tunnels or bridges. A disruption that damages bridges or tunnels will take longer to repair, 
thereby flattening the recover trajectory on main lines. 

4. Conclusions 

In this paper we investigate the resilience curves and recovery trajectories for two types of natural hazards along 
the German railway network. This is the first study that attempts to quantify both the absorption and recovery phases 
of railway traffic resilience in a single framework. We find that for flood disruptions lasting of more than one day, it 
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takes on average five days for traffic to return to its regular operations. For tree-fall disruptions, it takes three days on 
average. Trajectories vary by route type and the presence of adjacent disruptions, and are strongly influenced by 
weather or seasonal processes. The network-wide statistical approach employed here allows for a broad inspection of 
resilience of the German railway that is limited neither to a specific local infrastructure nor to specific natural hazard 
events. An extension would be to validate the descriptive results using an event study analysis. Infrastructure managers 
and the Deutsche Bahn can use the recovery duration estimates resulting from this study as a benchmark upon which 
to set resilience policies and post-disruption recovery strategies, in order to build a more reliable transport system in 
the event of floods or tree fall. When performed for more than these two processes, the estimated resilience curves 
can help the infrastructure manager determine which natural hazard their transportation system is least resilient to, 
allowing for a more specific prioritization of safety measures.   
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